lenovo 320s review and Buy

lenovo 320s review

The IdeaPad 320S is a sleek, lightweight laptop that packs a processing punch. Featuring a host of upgrades from the 120S series, the newly redesigned IdeaPad 320S offers 7th Gen Intel® Core™ i7 Processor, additional memory and storage for lightning-fast performance, startling FHD clarity and premium metal details. Designed to meet your productivity and entertainment needs in style.


Lenovo IdeaPad 320S-14IKB
Screen14.0 inch, 1920 x 1080 px, IPS, matte, non-touch
ProcessorIntel Kaby Lake Core i7-7500U CPU
VideoIntel HD 620 + Nividia GT 920MX 2 GB GDDR5
Memory8 GB DDR4 (soldered)
Storage256 GB SSD (2.5″ SATA bay) + M.2 80 mm (free on this unit)
ConnectivityWireless AC (Intel AC 3166), Bluetooth 4.1
Ports1x USB 3.0, 1 x USB 2.0, 1x USB Type-C gen 1, HDMI, mic/headphone, SD card reader
Baterry52 Wh, 45 W power adapter
Operating systemWindows 10
Size327 mm or 12.87” (w) x 238 mm or 9.37” (d) x 19.9 mm or 0.78” (h)
Weight3.39 lbs (1.54 kg)
Extras
non-backlit keyboard, HD camera

DESIGN


Design is a number one enchantment of the lenovo ideapad 320. that is unusual for a pc of this fee.  

from a distance you can easily believe it fees £six hundred-a thousand. it doesn’t have the thick body or unsophisticated lines of the common finances laptop. alternatively, the lenovo ideapad 320s has an ultrabook-like shell, however one made basically of plastic rather than aluminium.the lid is aluminium, but lenovo has sensibly chosen to favour a classy appearance rather than showing this off, the usage of the identical block colour for the complete shell. 

it feels sturdy too. there’s minimum flex to the lenovo ideapad 320s display and only a small part of the keyboard flexes beneath strain, or even then you have to be searching out faults to notice it.

Keyboard and touchpad 


The lenovo ideapad 320s keyboard and trackpad don’t feel considerably worse than those of the a good deal greater steeply-priced ideapad 720s. there are budget-associated compromises, but none are too evident in this place.

like other slim laptops, the keys are a touch shallow and their resistance a touch decrease than the ideapad 720s’s, but typing is cozy. that is one of the advantages of getting a 14in pc like this instead of a far smaller version: the keys sense well-spaced. there's no backlight, even though, meaning you want to touch kind at night time.  

the trackpad under is a reasonably standard plastic pad, with buttons built into the floor. its click sound is a chunk loud, and the floor now not as smooth as a glass pad. however, just like the rest of the lenovo ideapad 320s, it’s a fairly convincing impersonation of a far greater expensive system’s touchpad.

Screen


The lenovo ideapad 320’ss display screen is the one part that immediately marks this out as cheap pc. it makes use of a tn-fashion display in place of the ips liquid crystal display kind visible in almost all extra pricey laptops at this point.  

whilst tilted again too far, the colors invert and the display screen seems forged in shadow. tilt it towards you and the lenovo ideapad 320s appears washed-out. vertical viewing angles are terrible, making the screen appearance bad until viewed useless-on.  

resolution is constrained too at 1366 x 768 pixels. however, this is currently the maximum common resolution at the charge. and it doesn’t appear aggressively pixellated.colour overall performance is tremendously bad, masking just fifty six% of srgb, 39% of adobe rgb and forty% of dci p3. that is low enough to make undersaturation straight away obvious. playing a movie on the lenovo ideapad 320s right next to the ideapad 720s, the latter seems a long way richer.  

contrast is very poor too, every other function typical of a fashionable tn panel, at 205:1. black degrees are truly imperfect even in a properly-lit room.  

and finally, brightness isn’t excellent both, with maximum intensity of 263cd/m. we love to peer degrees over 300cd/m.

Battery life


This laptop doesn’t get into the young adults of hours of battery existence like some low-strength laptops. but, it does nudge its way towards all-day stamina while simply gambling regionally stored video, at 120cd/m brightness.  

it lasts simply over eight hours of 720p film playback, that's a fairly light venture even for an intel pentium cpu. you should see similar outcomes whilst certainly catching up on emails or writing docs, with 7-8 hours flawlessly possible at the type of display screen brightness level you might use interior. lenovo guarantees seven hours’ use, and grants.

PERFORMANCE

The lenovo ideapad 320s is a low-give up laptop. it makes use of the intel pentium 4415u cpu a twin-middle with 4 threads and a base clock speed of 2.3ghz. 

we commonly advocate in opposition to shopping for a windows 10 pc with a pentium or intel atom processor, as they may be often a chore to use. even gadget navigation may be sluggish to the factor of annoyance.

however, the lenovo ideapad 320s proves we’re again at a point in which an intel pentium pc may be a bargain. windows 10 feels fast, there’s no expecting fundamental elements of the os to appear and widespread responsiveness is remarkably near that of a middle i3 computer. that is, in component, way to using a 128gb ssd in preference to a slower tough power.  

conscious that there’s nonetheless a query of how an awful lot an intel pentium cpu with 4gb of ram can clearly hack, we tried beginning a dozen browser home windows, some files and strolling minecraft within the history. the lenovo ideapad 320s nonetheless didn’t fall over, despite the fact that looking at home windows 10 challenge supervisor’s cpu usage stats it’s clear the lenovo ideapad 320s is made for mild tasks. processor utilization changed into pretty excessive with this type of low-stage multi-tasking.

if you want to do video enhancing, use photoshop or tune production software, we’d particularly propose a center i-collection computer rather. that said, for the form of work we generally tend to do: browsing, writing documents and relatively simply modifying of photos, the lenovo ideapad 320s fares relatively nicely.ompared to our in advance opinions of older pentium laptops, the lenovo ideapad 320s performs fairly properly in benchmarks. it scores 4995 factors in geekbench four, as compared to the 3211 of the older-technology pentium cpu asus vivobook max x541sa and the 6000-plus of a core i5 gadget.  

we’re as a substitute impressed with the lenovo ideapad 320s, and will luckily use it as our essential paintings machine. till we had to edit video or do a little extreme photo enhancing, at any rate.  

gaming overall performance is plenty worse than a center i5 alternative, though. wherein a center i5 laptop like the acer swift 3 can play alien: isolation at 720p and manage an appropriate 30fps average, the lenovo ideapad 320s averages an unplayable sixteen.7fps.

at 1366p this slows to 11.6fps. we’d commonly check at 1080p, but the lenovo ideapad 320’s display screen isn’t that excessive-res.  

deus ex: human revolution is unplayable irrespective of the setting. at 720p low it shuffles along at 7.7fps, losing to a painful 2.7fps at native decision, extremely settings.

the lenovo ideapad 320s can play minecraft fortunately. we tried it. however don’t count on an excessive amount of extra than that.  

one advantage of using one of these low-give up cpu is that even as there's a fan, it’s in no way remotely loud. even after a series of gaming checks, the lenovo ideapad 320s turned into very quiet.

Gambling And Gaming Reviews » How To Choose The Right Online Sportsbook

  online sportsbook: avoid the bad sportsbooks, because they are plentiful.  First, avoid sportsbooks that charge a fee for withdrawals.  At least one withdrawal per month should be free.  Charging a fee for express courier is understandable, but some sportsbooks charge fees for any & all withdrawals.  BetUs.com charges a $40 fee for every withdrawal.  This is not acceptable.
    The first and most important consideration in choosing a decent
      Choose a sportsbook that pays, and pays quickly.  This may sound obvious, but you would be surprised.  World Sports Exchange (wsex) takes two to three months for payment.  Some other sportsbooks never pay at all.  There are stories…at BetUs.com and Oddsmaker.com if you win too much, you will be labled a “professional” and your account will be frozen.  Basically, these sportsbooks only cater to fools who bet small and lose often.
      Choose a sportsbook with decent customer service.  It can be aggravating talking to or emailing a person who barely understands English.  Bookmaker.com and BetJamaica come to mind; their agents are very difficult to deal with. Also, choose a book with a modern website.  Bookmaker.com and 5dimes.com have archaic websites that were built in a third-world country many years ago and have never been upgraded.  Try navigating a website built in the 1990s and you will become frustrated.
      Some sportsbooks offer very low maximum bets.  This might be okay for some, but if you prefer higher max bets, look around.  Bodog.com is famous, or infamous, for offering the lowest max bets in the industry.  This brings up another point, choose a sportsbook that puts their pointspreads up early, as opposed to late.  Bodog is always the last sportsbook to post lines on games.  Sportsbook.com is usally the first.
       Lastly, avoid online sportsbooks that promise you the world in signup bonuses.  SBG Global and Bookmaker.com are perfect examples. SBG Golboal promises a 295% bonus for new members.  Read the fine print and you will see it’s a complete farce.  Oddsmaker.com is nearly as bad. Know this, the worse a sportsbook is, the more desperate a sportsbook is, the higher the bonus they will offer.
      Also, don’t believe online reviews with links to a particular sportsbook.  For example, Covers.com and Sportsbookreviews.com are paid by sportsbooks to give positive sportsbooks reviews.
      If it sounds like there aren’t many good choices out there, now you begin to understand the industry. No recommendations, but now at least you know the pitfalls of the online sportsbook world.
Dr. VanLocke
-

About the Author:
Dr. Van Locke has been a leading handicapper and sports enthusiast for 15+ years. As a founding member of Lock Of The Day, he writes about sports and poinstread matchups on a daily basis.  Lock Of The Day is the oldest online sports handicapper, online since 2002.  Specializing in football, Dr VanLocke offers daily insight and in-depth football betting analysis.
This entry was posted on Friday, December 31st, 2010 at 5:20 am and is filed under Bookmaker Reviews.
You can follow any responses to this entry through the RSS 2.0 feed. You can skip to the end and leave a response. Pinging is currently not allowed.

Leave a Reply

cheap gaming laptop - Cheapest Gaming Laptop

Have you noticed that Gaming Laptops are so expensive and you are likely to pay any between $3000 – $6000 for some of the top models. However, in order to produce an exclusive gaming laptop, it requires certain high-end components and specifications. Think about Blu-ray, mega fast processor speeds, superior graphics and a ton of RAM.
This is all well and good, but what happens when the gaming laptop of your dreams, looks like it’s just going to remain a dream.
It appears there are a number of ways you can still get your hands on a decent and reliable gaming laptop. OK, in all honesty, it may not have everything that you would get for a higher priced model, but it will still provide you with great performance and allow you to enjoy the latest and up to the minute 3D video games on your laptop.
So where do you start looking?
If you are in the market to purchase a new laptop for your gaming pleasure, there are two that you may wish to consider – The Gateway P-7811FX and the Qosmio X305. Both of these can be purchased for approximately $1500, so a huge saving on what you first considered.
However, if this is still way over your budget, then you still have the choice of a refurbished or used laptop.
A refurbished laptop has usually been returned to the manufacturer because of a slight blemish or scratch. The manufacturer will then put this through quality testing and if it is believed to be acceptable for sale to the general public, it will then be available to you at a much lower price. Usually you will also receive a guarantee and a warranty.
As for used laptops, two of the best ways to get your hands on one is through an auction or even checking out the classified ads of your local newspaper.

I would advise a slightly more cautious approach if you are looking to purchase a used laptop. You don’t wish to agree a sale and then find you have bought something of no use. This is why I suggest your Local newspaper, this can give you the opportunity to visit the seller and check out your gaming laptop first hand.

gaming laptop under 1000 - Cheapest Gaming Laptop

Some of the best laptops under $1000 offer some quality features that will help you accomplish the work you need to get done when you are mobile. As manufacturers compete for your business, they are constantly upgrading their units to meet the demands of the consumer. Here we take at look at:
The Samsung Series 5 3G Chromebook, which starts at $499, boots up very quickly and is said to be faster than desktop computers. The staying power of the battery is one thing people consider when purchasing a laptop and this series has a integrated lithium-polymer battery that lasts for an impressive 8.1 hours at 7.4 volts. Another strong feature is that there are no cooling fins at the point near the fan’s exhaust, as it puts out such a small amount of heat. Since Samsung fixed all the glitches that were known to exist in their previous Chromebook, this unit has optimized performance. Their new model is not only slimmer and lightweight, but it is much more attractive than the previous model.
The Toshiba Satellite L655-S5158 starts at $629.99 and is ideal for home or office. The notepad comes with a endurable, high gloss Fusion finish that is not only attractive, but hides fingerprints exceptionally well. It offers a good amount of mobile computing power, so multi-tasking is no burden. It is equipped with a full-size keyboard with a ten key number pad. A multi-touch control allows you to swipe, rotate, scroll and zoom with a brush of your finger. A built-in HDMI port allows you to connect your laptop to a home theatre. Available in black, red and pink, this model is also sleek and lightweight.
The Apple MacBook MC516LL/A starts at $939.99; it has a fast 2.4 GHz Intel Core 2 Duo processor and a 250 GB hard drive, which is a ‘stand-alone’ feature for a laptop, as it has a 10 hour battery life on one charge.
It features NVIDIA graphics which bring increased speed and efficiency. Visuals are superb and frame rates are fast.

The top computer manufacturers are producing some of the most splendid laptops to date. They are now incredibly powerful and fast, but they are also becoming so affordable that more and more users are purchasing them. Functionality, performance, speed, graphics and efficiency are notable in all of the above models. Each new release out-performs and out-lasts its predecessor, making these some of the best laptops under $1000.

Acer swift 3 7th gen intel core review

Acer swift 3 7th gen intel core review

  • 7th Generation Intel Core i5-7200U Processor (Up to 3.1GHz)
  • 14" Full HD (1920 x 1080) Widescreen LED-backlit Display
  • 8GB DDR4 Onboard Memory, 256GB SSD
  • Windows 10 Home
  • Up to 10-hours Battery Life

ASUS VivoBook F510UA-AH51 FHD Laptop Review

  • ASUS VivoBook F510UA-AH51 FHD Laptop Review

  • Powerful 8th Generation Intel Core i5-8250U 1.6GHz (Turbo up to 3.4GHz) processor
  • 14.2" wide, 0.8" thin and portable footprint with 0.3" NanoEdge bezel for a stunning 80% screen-to-body ratio
  • 15.6" anti-glare Full HD display with ASUS Splendid software enhancement
  • 8GB DDR4 RAM and 1TB HDD; Ergonomic chiclet keyboard with fingerprint sensor
  • Comprehensive connections including USB 3.1 Type-C (Gen1), USB 3.0, USB 2.0, and HDMI; Lightning-fast 802.11ac Wi-Fi keeps you connected through any congestion or interference

gaming laptop under 600 - Cheapest Gaming Laptop

The “R600″ is the first personal computer graphics processing unit (GPU) from ATI based on a unified shader architecture. It is ATI’s second generation unified shader design and is based on the “Xenos” GPU implemented in the Xbox 360 game console, which used the world’s first such shader architecture. Previous GPU architectures implement separate processors for each type of graphics function. A unified architecture leverages many flexible processors which can be scheduled to process a variety of shader types, thereby significantly increasing GPU throughput (dependent on application instruction mix as noted below). The R600 core processes vertex, geometry, and pixel shaders as outlined by the Direct3D 10.0 specification for Shader Model 4.0 in addition to full OpenGL 3.0 support.
The new unified shader functionality is based upon a Very long instruction word (VLIW) architecture in which the core executes operations in parallel.
A shader cluster is organized into 5 stream processing units. Each stream processing unit (except the 5th) can retire a finished single precision floating point MAD (or ADD or MUL) instruction per clock, dot product (dp, and special cased by combining ALUs), and integer ADD. The 5th unit is more complex and can additionally handle special transcendental functions such as sine and cosine. Each shader cluster can execute 6 instructions per clock cycle (peak), consisting of 5 shading instructions plus 1 branch .
Notably, the VLIW architecture brings with it some classic challenges inherent to VLIW designs, namely that of maintaining optimal instruction flow.
Additionally, the chip cannot co-issue instructions when one is dependent on the results of the other. Performance of the GPU is highly dependent on the mixture of instructions being used by the application and how well the real-time compiler in the driver can organize said instructions.
R600 core includes 64 shader clusters, while RV610 and RV630 cores have 8 and 24 shader clusters respectively.
See also: Very long instruction word
Hardware tessellation
The GPU is equipped with an extra feature which is not part of the current DirectX 10.0 specification. It contains programmable tessellation units, similar to those within the Xenos GPU (codenamed “C1″) also developed by ATI. This unit allows a developer to take a simple polygon mesh and subdivide it based on a curved surface evaluation function, with different tessellation forms as Bzier surfaces with N-patches, B-splines and NURBS, and even some subdivision surface techniques, which usually comes with a displacement map texture. Essentially, this allows a simple, low-polygon model to be increased dramatically in polygon density in real-time with minimized performance loss. Scott Wasson of Tech Report noted during an AMD demo of the technology that the resulting model was so dense with millions of polygons that it appeared to be solid.
This unit is reminiscent of ATI’s earlier “TruForm” technology, used initially in the Radeon 8500, which performed a similar function in hardware. While this tessellation hardware is not part of the current OpenGL or Direct3D requirements, and competitors such as the GeForce 8 series lack similar hardware, Microsoft has included Tessellation as part of their D3D10.1 future plans. The “TruForm” technology from the past received little attention from software developers and was only utilized in a few game titles (such as Madden NFL 2004, Serious Sam, Unreal Tournament 2003 and 2004, and unofficially Morrowind), because it was not a feature shared with NVIDIA GPUs which had a competing Tessellation solution using Quintic-RT patches which met with even less support from developers. Since the Xenos contains similar hardware, and Microsoft sees hardware surface tessellation as a major GPU feature with proposed implementation of hardware tessellation support in future DirectX releases (presumably DirectX 11), dedicated hardware tessellation units may receive increased developer awareness in future titles. It remains to be seen whether ATI’s implementation will be compatible with the eventual DirectX standard.
Ultra threaded dispatch processor
Although the R600 is a significant departure from previous designs, it still shares many features with its predecessors. The “Ultra-Threaded Dispatch Processor” is a major architectural component of the R600 core, just as it was with the Radeon X1000 GPUs. This processor manages a large number of in-flight threads of three distinct types (vertex, geometry, and pixel shaders) and switches amongst them as needed. With a large number of threads being managed simultaneously it is possible to reorganize thread order to optimally utilize the shaders. In other words, the dispatch processor evaluates what goes in the other parts of the R600 and attempts to keep processing efficiency as high as possible. There are lower levels of “management” as well; each SIMD array of 80 stream processors has its own sequencer and arbiter. The arbiter decides which thread to process next, while the sequencer attempts to reorder instructions for best possible performance within each thread.
Texturing and anti-aliasing
Texturing and final output aboard the R600 core is similar but also distinct from R580. R600 is equipped with 4 texture units that are decoupled (independent) from the shader core, like in the R520 and R580 GPUs.
The render output units (ROPs) of Radeon HD 2000 series now performs the task of multi-sample anti-aliasing (MSAA) with programmable sample grids and maximum of 8 sample points, instead of using pixel shaders as in Radeon X1000 series. Also new is the capability to filter FP16 textures, popular with HDR lighting, at full-speed. ROP can also perform trilinear and anisotropic filtering on all texture formats. On R600, this totals 16 pixels per clock for FP16 textures, while higher precision FP32 textures filter at half-speed (8 pixels per clock).
Anti-aliasing capabilities are more robust on R600 than on the R520 series. In addition to the ability to perform 8x MSAA, up from 6x MSAA on the R300 through R580, R600 has a new “custom filter anti-aliasing” (CFAA) mode. CFAA refers to an implementation of non-box filters that look at pixels around the particular pixel being processed in order to calculate the final color and anti-alias the image. CFAA is performed by shader, instead of in the ROPs. This brings greatly enhanced programmability because the filters can be customized, but may also bring potential performance issues because of the use of shader resources. As of launch of R600, CFAA utilizes wide and narrow tent filters. With these, samples from outside the pixel being processed are weighted linearly based upon their distance from the centroid of that pixel, with the linear function adjusted based on the wide or narrow filter chosen.
Memory controllers
Memory controllers are connected via internal bi-directional ring bus wrapped around the processor. In Radeon HD 2900, it is a 1024-bit bi-directional ring bus (512-bit read and 512-bit write), with 8 64-bit memory channels for a total bus width of 512-bits on the 2900 XT.; in Radeon HD 3800, it is a 512-bit ring bus; in Radeon HD 2600 and HD 3600, it is a 256-bit ring bus; In Radeon HD 2400 and HD 3400, there is no ring bus.
Video processing, display and miscellaneous features
All video cards except the Radeon HD 2900 series include dedicated ATI’s Unified Video Decoder for hardware decoding of MPEG4, VC-1, H.264 video streams, which itself being the major part of AVIVO HD technology. In terms of functionality, NVIDIA’s Purevideo 2 offer similar hardware video acceleration, with UVD including greater VC-1 offloading.
HDTV encoding support is implemented via the integrated AMD Xilleon encoder; the companion “Rage Theater” chip used on the Radeon X1000 series was replaced with the digital “Theater 200″ chip, providing VIVO capabilities.
For display outputs, all variants include two dual-link TMDS transmitters, except for HD 2400 and HD 3400, which include one single and one dual-link TMDS transmitters. Each DVI output includes dual-link HDCP encoder with on-chip decipher key. HDMI was introduced, supporting display resolutions up to 19201080, with integrated HD audio controller with 5.1-channel LPCM and AC3 encoding support. Audio is transmitted via DVI port, with specially designed DVI-to-HDMI dongle for HDMI output that carries both audio and video.
All variants support CrossFireX technology. CrossFire efficiency was improved and shows performance approaching the theoretical maximum of twice the performance of a single card.
While some of the architecture of Radeon HD 2000 family is similar to Xenos, Radeon HD 2000 family does not have embedded DRAM (eDRAM) frame buffer. Xenos’ eDRAM is designed tightly around the limited resolutions at which the Xbox 360 operates. Personal computers operate at maximum efficiency at a much wider range of resolutions, which would require a significantly larger amount of eDRAM to be effective.
Half-generation update
The series saw a half-generation update with die shrink (55 nm) variants: RV670, RV635 and RV620. All variants support PCI Express 2.0, DirectX 10.1 with Shader Model 4.1 features, dedicated ATI Unified Video Decoder (UVD) for all models and PowerPlay technology for desktop video cards.
Except the Radeon HD 3800 series, all variants supported 2 integrated DisplayPort outputs, supporting 24- and 30-bit displays for resolutions up to 25601600. Each output included 1, 2, or 4 lanes per output, with data rate up to 2.7 Gbps per lane.
ATI claimed that the support of DirectX 10.1 can bring improved performance and processing efficiency with reduced rounding error (0.5 ULP compared with average error 1.0 ULP as tolerable error), better image details and quality, global illumination (a technique used in animated films, and more improvements to consumer gaming systems therefore giving more realistic gaming experience. )
Desktop products
The R600 family is called the Radeon HD 2000 series, with the enthusiast segment being the “Radeon HD 2900 series” which originally comprised the Radeon HD 2900 XT with GDDR3 memory released on May 14, and the higher-clocked GDDR4 version in early July.
The mainstream and budget segment products were the Radeon HD 2600 and Radeon HD 2400 series respectively, both launched June 28, 2007.
Previously there were no HD 2000 series products being offered in the performance segment while ATI used models from the previous generation to address that target market; the situation was not changed until the release of variants of the Radeon HD 2900 series, the Radeon HD 2900 Pro and GT, which filled the gap of the performance market for a short period of time.
Radeon HD 2900
The Radeon HD 2900 series was based on the codenamed R600 GPU, packed 700 million transistors on an 80 nm fabrication process and had a 420mm die size. The Radeon HD 2900 XT was the first graphics card product to implement digital PWM onboard, specifically 7-phase PWM. The first product of the line, the Radeon HD 2900 XT, was launched on May 14, 2007.
The Radeon HD 2900 Pro was clocked lower at 600 MHz core and 800 MHz memory (1600 MHz effective), configured with 512 MiB or 1 GiB (GDDR3/GDDR4) of video memory and the same 512-bit memory controller as the Radeon HD 2900 XT instead of the previously rumored 256-bit memory controller.
The Radeon HD 2900 GT was a 48-shader cluster variant clocked the same as the HD 2900 Pro with 256 MB of video memory on a 256-bit interface.
Radeon HD 2600
The Radeon HD 2600 series was based on the codenamed RV630 GPU and packed 390 million transistors on a 65 nm fabrication process. The Radeon HD 2600-series video cards included GDDR3 support, a 128-bit memory ring bus and 4-phase digital PWM, spanning a die size of 153 mm. Neither of the GDDR3 reference PCI-E designs required additional power connectors whereas the HD 2600 Pro and XT AGP variants required additional power through either 4-pin or 6-pin power connectors. Official claims state that the Radeon HD 2600 series consumes as little as 45 W of power.[citation needed]
Radeon HD 2600 X2
The Radeon HD 2600 X2 is a dual-GPU product which includes 2 RV630 cores onto a single PCB with a PCI-E bridge splitting the PCI-E x16 bandwidth into two groups of PCI-E x8 lanes (each 2.0 Gb/s). The card provides 4 DVI outputs or HDMI outputs via dongle and supports CrossFire configurations. AMD calls this product the “Radeon HD 2600 X2″ as seen by some vendors and as observed inside the INF file of Catalyst 7.9 version 8.411. Sapphire and other vendors including PowerColor and GeCube have either announced or demonstrated their respective “CrossFire on a card” products. Catalyst 7.9 added support for this hardware in September 2007. However, AMD did not provide much publicity to promote it. A vendor may offer cards containing 256 MB, 512 MB, or 1 GB of video memory. Although the memory technology utilized is at a vendor’s discretion, most vendors have opted for GDDR3 and DDR2 due to lower manufacturing cost and positioning of this product for the mainstream rather than performance market segment.
Radeon HD 2400
The Radeon HD 2400 series was based on the codenamed RV610 GPU. It had 180 million transistors on a 65 nm fabrication process. The Radeon HD 2400 series used a 64-bit-wide memory bus. The die size is 85 mm. The official PCB design implements only a passive-cooling heatsink instead of a fan, and official claims of power consumption are as little as 35 W.[citation needed] The core has 16 KB unified vertex/texture cache away from dedicated vertex cache and L1/L2 texture cache used in higher end model.
Reports has that the first batch of the RV610 core (silicon revision A12), only being released to system builders, has a bug that hindered the UVD from working properly, but other parts of the die operated normally. Those products were officially supported with the release of Catalyst 7.10 driver, which the cards were named as Radeon HD 2350 series.
Radeon HD 3800
The Radeon HD 3800 series was based on the codenamed RV670 GPU, packed 666 million transistors on a 55 nm fabrication process and had a die size at 192 mm, with the same 64 shader clusters as the R600 core, but the memory bus width was reduced to 256 bits.
The RV670 GPU is also the base of the FireStream 9170 stream processor, which uses the GPU to perform general purpose floating-point calculations which were done in the CPU previously.
The Radeon HD 3850 and 3870 became available mid-November 2007.
Radeon HD 3690/3830
The Radeon HD 3690, which was limited only to the Chinese market where it was named HD 3830, has the same core as the Radeon 3800 series but with only a 128-bit memory controller and 256MB of GDDR3 memory. All other hardware specifications are retained.
A further announcement was made that there would be a Radeon HD 3830 variant bearing the same features as Radeon HD 3690, but with a unique device ID that does not allow add-in card partners in China to re-enable the burnt-out portion of the GPU core for more memory bandwidth.
The Radeon HD 3690 was released early February 2008 for the Chinese market only.
Radeon HD 3800 X2
Radeon HD 3870 X2
Radeon HD 3870 X2 (codenamed R680) was released on January 28, 2008, featuring 2 RV670 cores with a maximum of 1024 MB GDDR3 SDRAM, targeting the enthusiast market and replacing the Radeon HD 2900 XT. The processor achieved a peak single-precision floating point performance of just over 1 TFLOPS (1.06 TFLOPS), being the world’s first single-PCB graphics product breaking the 1 TFLOP mark.
The Radeon HD 3870 X2 uses the same approach for communications between the two GPU cores as the Sapphire Radeon X1950 Pro Dual and Radeon HD 2600 X2. The GPU cores communicate to each other through an onboard PCI-E switch, providing each core with x8 (Radeon X1950 Pro Dual) to x16 (Radeon HD 2600 X2) PCI-E bandwidth and becoming a software CrossFire setup, supporting two extra hardware CrossFire bridges. The Radeon HD 3870 X2 uses PEX8547 PCI-E switch,, but each core shares x16 PCI-E bandwidth. The card only sees one CrossFire bridge being placed onboard and between the cores, thus only allowing one CrossFire bridge to be plugged onto the card.
AMD stated the possibility of supporting 4 Radeon HD 3870 X2 cards, allowing 8 GPUs to be used on several motherboards, including the MSI K9A2 Platinum and Intel D5400XS, because these motherboards have sufficient spaces between PCI-E slots for dual-slot cooler video cards, presumably as a combination of two separate hardware CrossFire setups with a software CrossFire setup bridging the two, but currently with no driver support.
Radeon HD 3600
The Radeon HD 3600 series was based on the codenamed RV635 GPU, packed 378 million transistors on 55 nm fabrication process, and had 128-bit memory bus width. The support for HDMI and D-Sub ports is also achieved through separate dongles. Beside the DisplayPort implementations, there also exists other display output layouts as dual DVI port or DVI with D-Sub display output layout.
The only variant, the Radeon HD 3650, was released on January 23, 2008.
Radeon HD 3400
AMD Radeon HD3450
The Radeon HD 3400 series was based on the codenamed RV620 GPU, packed 181 million transistors on a 55 nm fabrication process, and had 64-bit memory bus width. Products were available in full height ATX cards and low-profile cards.
One of the notable features is that the Radeon HD 3400 series (including Mobility Radeon HD 3400 series) video cards support ATI Hybrid Graphics.
The Radeon HD 3450 and Radeon HD 3470 were released on January 23, 2008.
Mobile products
All Mobility Radeon HD 2000/3000 series share the same feature set support as their desktop counterparts, as well as the addition of the battery-conserving PowerPlay 7.0 features, which are augmented from the previous generation’s PowerPlay 6.0.
The Mobility Radeon HD 2300 is a budget product which includes UVD “in silica” but lacks unified shader architecture and DirectX 10.0 / SM 4.0 support, limiting support to DirectX 9.0c / SM 3.0 using the more traditional architecture of the previous generation. A high-end variant, the Mobility Radeon HD 2700, with higher core and memory frequencies than the Mobility Radeon HD 2600, was released in mid-December 2007.
The Mobility Radeon HD 2400 is offered in two model variants; the standard HD 2400 and the HD 2400 XT.
The Mobility Radeon HD 2600 is also available in the same two flavors; the plain HD 2600 and, at the top of the mobility lineup, the HD 2600 XT.
The half-generation update treatment had also applied to mobile products. Announced prior to CES 2008 was the Mobility Radeon HD 3000 series. Released in the first quarter of 2008, the Mobility Radeon HD 3000 series consisted of two families, the Mobility Radeon HD 3400 series and the Mobility Radeon HD 3600 series. The Mobility Radeon HD 3600 series also featured the industry’s first implementation of on-board 128-bit GDDR4 memory.
About the time of late March to early April, 2008, AMD renewed the device ID list on its website with the inclusion of Mobility Radeon HD 3850 X2 and Mobility Radeon HD 3870 X2 and their respective device IDs. Later in Spring IDF 2008 held in Shanghai, a development board of the Mobility Radeon HD 3870 X2 was demonstrated alongside a Centrino 2 platform demonstration system. The Mobility Radeon HD 3870 X2 was based on two M88 GPUs with the addition of a PCI Express switch chip on a single PCB. The demonstrated development board is on PCI Express 2.0 x16 bus, while the final product is expected to be on AXIOM/MXM modules.
Driver support
Main article: ATI Catalyst Drivers
Windows
The Purple Pill tool issue, which could allow unsigned drivers to be loaded into Windows Vista and tamper with the operating system kernel, was resolved in the Catalyst 7.8 release (version 8.401). The AVIVO video converter for Windows Vista, and color temperature control in Catalyst Control Center was added with the release of Catalyst 7.9, package version 8.411. Software CrossFire was enabled for HD 2600 and HD 2400 series video cards with the release of Catalyst 7.10 (package version 8.421)
The Catalyst 8.1, package version 8.451, supports for MultiView technology for accelerated OpenGL rendering on multiple video card setup (CrossFire). The driver also allows CrossFire configurations for Radeon HD 3850 and HD 3870 video cards.
The Catalyst 8.3 is described by AMD as a milestone release, supporting DirectX 10.1, ATI CrossFire X technology and allowing the mixing of different Radeon HD 3800 series video cards to form a CrossFire X setup with 2 to 4 GPUs. Catalyst 8.3 introduced to new video controls to further enhance the video playback quality, these controls includes edge enhancement and noise reduction settings. There is also the support for extended desktop in CrossFire X mode. The anti-aliasing support for Unreal Engine 3.0 in DirectX 9.0 games, support for CFAA filters (wide tent and box tent) to be enabled when Super AA is enabled, and other features as developer support for Hardware surface tessellation, hardware accelerated wide aspect ratio LCD scaling, HydraVision support for Windows Vista allowing to add maximum 9 virtual desktops and new Folding@Home client (version 6.10) are also officially supported in this release.
The Catalyst 8.5, package version 8.493 brought new features include component video with 480i and 480p resolutions, SECAM TV output support, 1080p HDTV custom mode via HDMI, 1080p24 (1080p resolution at 24 frame/s) support, HDMI Audio for non-standard TV modes (CEA 861b), support for adaptive anti-aliasing under OpenGL, Windows XP SP3 support and un-install utility enhancements. The driver also includes performance improvements and fixes some instability issues and rendering issues on some games.
It should be note that current Catalyst drivers do not support the AGP versions of Radeon HD 2000/3000 series cards with RIALTO bridge. Installing Catalyst drivers on those cards will yield the following error message: “setup did not find a driver compatible with your current hardware or operating system.” or simply fail outright. The AGP cards in question are supported unofficially by ATI/AMD with a “hotfixed” Catalyst driver-set each month since May 2008 with the Catalyst 8.5 hotfix . Their PCI vendor IDs are listed below:
GPU core
Product
PCI device ID
RV610
Radeon HD 2400 Pro
94C4
RV620 (M82SE)
Radeon HD 3430
95C2
RV620
Radeon HD 3450
94C6
RV630
Radeon HD 2600 Pro
9587
RV630
Radeon HD 2600 XT
9586
Linux

The official closed-source ATI Linux driver was named fglrx, then renamed as Catalyst drivers for Linux, currently version 9.12. In the past there was no support for the AGP versions of the HD 2400 and HD 2600, but support was added in version 8.5 of fglrx.
Another Linux driver is the RadeonHD driver, an open-source ATI R500/600 display driver, it is developed in part by specifications that AMD has openly published. To date, AMD has released register specifications for M56, M76, RV630 and RS690 GPUs and 3D programming guide for the R500 family of GPUs. AMD has committed to releasing their R500 and R600 GPU documentation along with publishing their specifications for past generations of GPUs.
Documentation release
AMD committed to releasing register documentations for each generations of GPU to support the open source community and an open source driver RadeonHD for Linux. Initial register documentation and parser code to execute the AtomBIOS ROM routines were released in September 2007. The R600 family Instruction Set Architecture guide was released on June 11, 2008. Sample code and register headers for the R600 and R700 3D engines were released in December 2008. AMD released the specifications for both the r6xx and r7xx families on January 26, 2009.
Marketing
New model numbering scheme
The numbering schemes for Radeon HD 3000 series as well as Mobility Radeon HD 3000 series were notably changed. While previous PRO, XT, GT, and XTX suffixes were eliminated, products were differentiated by changing the last two digits of the product model number (for instance, HD 3850 and HD 3870, giving the impression that the HD 3870 model having higher performance than HD 3850). While for dual-GPU products, a new suffix “X2″ will be used to identify its nature as dual-GPU on one PCB solution. Similar changes to the IGP naming were spotted as well, for the previously launched AMD M690T chipset with side-port memory, the IGP is named “Radeon X1270″, while for the AMD 690G chipset, the IGP is named “Radeon X1250″, as for AMD 690V chipset, the IGP is clocked lower and having fewer functions and thus named “Radeon X1200″. The new numbering scheme of video products are shown below:
Product Category
Model number
range (steps of 10)1
Price range
(USD)
Shader amount
(VS/PS/SPU)2
Memory
Outputs
Product(s)
Type
Width
(bit)
Size (MiB)
Enthusiast
Dual GPU
800 X2-990 X23
>$250
200%
GDDR3,
GDDR4
2x 256-bit
512/1024
2 DVI,
HDMI, DP (Dongle)
HD 3870 X2/HD 3850 X2
Enthusiast
/high-end
800-990
>$150
75-100%
GDDR3,
GDDR4
256-bit
256/512/1024
2 DVI,
HDMI, DP (Dongle)
HD 3870/3850
Mainstream
600-790
$100$150
37.5-75%
DDR2,
GDDR3,
GDDR4
128-bit
128/256/512
D-Sub, DVI
HD 3650/3690
DVI, 2 DP,
HDMI (Dongle)
Budget/Value
350-590
25-50%
DDR2,
GDDR3
64-bit
64/128
(HM: 768/1024)
D-Sub, DVI,
HDMI, DP (Dongle)
HD 3450/3470
IGP
000-300
N/A
25-50%
UMA,
side-port memory
(GDDR2/GDDR3)
UMA + 32-bit
(side-port) 4
64/1284 + UMA
(OS dependent)
D-Sub, DVI,
HDMI, DP
Component (YCbCr)
X1270/X1250/X1200
HD 3200/HD 3100/2100
1 The last two digits denotes variant, similar to the previous suffixes, which “70″ is in essence the “XT” variant while “50″ is actually the “Pro” variant , while “90″ appeared once in the lineup and can be seen as the “XTX” variant.
2 Stream Processors only applicable to Direct3D 10-class video components (Radeon HD 2000/3000 series).
3 All Dual-GPU solutions will have an X2 suffix after the model number.
4 Side-port memory as local frame buffer is only available on selected IGP models, not all IGP models have this feature.
Product confusions
When Radeon HD 2900 was first released, there was much confusion as to whether or not the product included dedicated video processor hardware, due in part to statements that it supported the software program AVIVO HD. Many reviewers and subsequent readers/consumers interpreted this as meaning the HD2900 incorporated the same UVD hardware as found in the HD 2400 & HD 2600 series, despite some sites noting this difference at launch time, weeks before the issue first gained traction as a result of a TechReport article. This confusion and subsequent discussions prompted AMD to make a formal statement designed to clarify exactly what UVD was available in which models. The HD 2900 XT video playback capabilities are similar to those of the previous X1000 cards with AVIVO capabilities.
Starting August, 2007 some system builders including Falcon Northwest received the 1 GB GDDR4 (with Samsung 0.9 ns (K4U52324QE-BC09) GDDR4) version of the Radeon HD 2900 XT. Falcon Northwest incorrectly referred the product as the “Radeon HD 2900 XTX”.
It should be noted that several products, branded the Mobility Radeon X2000 series, are in fact based on the older R520 architecture and spotting the support of DirectX 9.0c only and do not have UVD on die.
Chipset table
Main article: Comparison of ATI Graphics Processing Units
See also
Video card
Graphics processing unit
GeForce 8 series
FireStream 9170, the GPGPU version of Radeon HD 3870 graphics card

AMD graphics products (ATI Technologies)
ATI consumer graphics processors
2D rendering
Direct3D 3-6
Direct3D 7
Direct3D 8
Direct3D 9
Direct3D 10
Direct3D 11
Mach
Rage
Radeon R100
Radeon R200
Radeon R300  R420  R520
Radeon R600  R700
Evergreen  Northern Islands1
Chipsets
ATI chipsets
AMD chipsets
IGP 300 series / RX380  Radeon Xpress 200  CrossFire Xpress 3200  Radeon Xpress 1250
480X / 570X / 580X  690 Series  7-Series  8-Series
Other ATI products and technologies
Multi-GPU
ATI Multi Rendering  CrossFire X
GPU technologies
TruForm  HyperMemory  HyperZ  PowerPlay  AVIVO  ATI Hybrid Graphics  XGP
Workstations and HPC
FireGL  FireMV  FirePro 3D  FireStream (Close to Metal)
Drivers and software
Catalyst  fglrx (Linux)  Hydravision  HLSL2GLSL
Multimedia and handheld
All-in-Wonder  Imageon2  Xilleon2
Video game console GPU

Top 7 Best Gaming Laptops Under 600 2017

4. HP laptop 17.3

5. Acer Aspire E 15 E5-575G-57D4 Laptop – SSD and Dedicated 2GB DDR5 RAM

6. ASUS P-Series P2540UA-AB51

7. Acer Aspire E5-575G-53VG